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duality. A more extensive series should provide an incisive 
picture of how to sterically and perhaps electronically pro­
mote fragmentation in this prototype cluster class. 

For all monomers to be 17-electron9 complexes, an ^'-al-
lyliron interaction should be present only in C3HsFe-
(CO)3(hexene) and probably the butyne analog6 although 
there is a possible continuum of idealized forms that range 
from symmetrical 7j3-allyl to tj'-allyl. ESR spectra for most 
complexes (solution state) exhibited the same triplet hyper-
fine structure, arising from two magnetically equivalent hy­
drogen atoms, presumably the anti10 set in 7j3-allyl and the 
aliphatic set in Tj'-allyl forms,11 in addition to a phosphorus 
doublet in phosphine and phosphite derivatives. The spin-
orbit contribution to the isotropic g values (Table I), which 
to a first approximation reflects the ligand field strength 
around iron, varies only slightly (~10% maximum) with li­
gand variation which invariance mirrors the relative con­
stancy of the iron-iron bond energies. 

Relatively large variations in go with temperature were 
observed, e.g., go for B varied from 2.0459 to 2.0423 in the 
+25 to —94° range. This effect could be due to an equilibri­
um between isomers (vide infra) or specific outer sphere 
solvation12 but the crucial point here is that the effects have 
no significant influence on the monomer-dimer equilibrium 
since there were no deviations from linearity in the In K vs. 
1/r plot over 90-130° ranges. 

Definitive evidence for the presence of isomers in mono­
nuclear complexes in frozen solutions (glasses) was ob­
tained. In many cases, the ESR spectra of glasses comprised 
the superposition of signals from two different species with 
different sets of g\\ and g± (see Table I). Whenever an ac­
curate interpretation of these spectra was possible,13 the 
more intense signal had g\\ < g±. For complexes with the 
hexenes, the less intense signal was also characterized by g\\ 
< g±, but for the remaining compounds the order was g\\ > 
g±. In frozen solutions of A in 2-butyne, the two species in-
terconverted rapidly on the ESR time scale at —90° in the 
solid state as seen from the collapse of the overlapping an­
isotropic spectra to a single isotropic line which was the 
same as in liquid solutions. A similar phenomenon was ob­
served for B at defects in the crystals of A, where the col­
lapse of the anistropic spectrum to the isotropic line oc­
curred above —30°. Such interconversion processes in the 
solid state show that the two species observed at low tem­
perature are two isomers of the same composition. For 
C3H5Fe(CO)2P(C6H5)3 in toluene glass, both isomers ex­
hibited triplet hyperfine structure from two equivalent pro­
tons but with different values of AH-

We defer discussion of the nature of the isomers and 
their unusual fluxional characteristics until X-ray crystal 
structure determinations for dimeric and monomeric forms 
and theoretical calculations14 have been completed. Substi­
tuted allyl analogs are being synthesized so that ESR char­
acterization of T?3- and Tj'-allyl interactions may be defini­
tive and the catalytic chemistry of the monomeric paramag­
netic species is under investigation with respect to scope and 
mechanism. 
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Species with Strong Heteronuclear Metal-Metal 
Bonds. Dimers with Tungsten-Molybdenum Bonds of 
Order 3.5 and 4.0 

Sir: 

Heteronuclear metal-metal bonded species containing 
only two metal atoms are of great importance since they 
constitute the simplest systems in which the effects of sub­
stituting one metal atom for another can be studied in de­
tail. Heteronuclear species with metal-metal bond order 
greater than unity should be especially interesting, but sel­
dom have they been realized. A few years ago in this labo­
ratory the heteronuclear carboxylate dimers MoW(C>2CR)4 
were prepared as constituents of mixtures containing the 
homonuclear molybdenum dimers M 02(02CR)4.

1 Until re­
cently the separation of such mixtures was unsuccessful. 

In more recent work2 it has been shown that selective io-
dination of a benzene solution of Mo2(02CC(CH3)3)4-
MoW(C>2CC(CH3)3)4 mixtures effected the desired separa­
tion by precipitation of [MoW(C>2CC(CH3)3)4]I, essential­
ly free of any corresponding dimolybdenum product. In­
frared spectra and magnetic susceptibility data led to the 
conclusion that the precipitated iodide contained the one-
electron oxidized cation [MoW(02CC(CH3)3)4]+. It was 
presumed that the structure and metal-metal bonding in 
this cation were entirely analogous with that in the com­
pounds [M02(O2CC(CH3)3)4]+l3"2 and K3Mo2(SO4^-
3.5H2O.3 We now report the preparation4 and molecular 
structure of [MoW(O2CC(CH3)S)4]I-CH3CN, and its re­
duction to MoW(02CC(CH3)3)4, the first pure heteronu­
clear species containing a quadruple metal-metal bond.5 

Surprisingly, solutions of [MoW(02CC(CH3)3)4]I in ac-
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Figure 1. Structure and labeling scheme for the molecular unit [Mo-
W(O2CC(CH3H)4] 1-CH3CN. Thermal elipsoids enclose 50% of the 
electron density. 

etonitrile appear to be stable indefinitely6 in the absence of 
oxygen and water. On slow evaporation of such solutions 
red-brown crystals of the acetonitrile adduct are easily ob­
tained. The crystals are orthorhombic with cell dimensions 
a = 35.59 (3), b = 36.22 (3), and c = 10.01 (1) A, space 
group Fddl, and pCaicd = 1-76 g cm - 3 for 16 formula units 
per unit cell. Data were collected using an automated four-
circle diffractometer with graphite monochromatized Mo 
Ka radiation within a 20 sphere of 45°. Of the 3103 inde­
pendent reflections checked, 2707 were used in the subse­
quent structure solution and refinement (/ > 3<xi). The po­
sitions of the three heaviest atoms in the molecular unit 
were located from analysis of a sharpened three-dimension­
al Patterson function. The remaining nonhydrogen atoms 
were located by successive structure factor and electron 
density map calculations. After refining all nonhydrogen 
atoms with anisotropic thermal parameters by full-matrix 
least-squares methods, H atoms were included as fixed 
atom contributions at 1.0 A from the bound C atom, and 
isotropic thermal parameters of 10.0 A2 in the final refine­
ment cycles. Refinement converged to final agreement in­
dices of 0.051 and 0.071 for R and /?w, respectively.7 

The remarkable structure of the molecular unit is depict­
ed in Figure 1. Indeed, the most interesting and fortunate 
feature of the structure is the discrete molecular character 
with the I atom uniquely bonded to the W atom, ^(W-I) = 
3.054 (2) A, and the N of acetonitrile very weakly bonded 
to the Mo atom, <f (Mo-N) = 2.71 (2) A, such that disor­
dering of the metal atoms is prevented. The very short 
Mo-W bond distance, 2.194 (2) A, is in full accord with the 
presumed bond order of 3.5 and compares quite favorably 
with d(Mo-Mo) = 2.164 (2) A (average) previously re­
ported for the Mo-Mo bond of order 3.5 in K3Mo2(S04)4-
3.5H2O.3 Other pertinent features of the molecular struc­
ture include the average bond distances Mo-O, 2.081 (13), 
and W-O, 2.064 (13) A; the bond angles are Mo-W-I, 
176.8 (I)0 , W-Mo-N, 176.0 (6)°, W-Mo-O (average), 
90.7 (3)°, and Mo-W-O (average), 90.7 (4)°. A calcula­
tion of deviations from the least-squares planes defined by 
W, Mo, 0(3), 0(4), 0(7), 0(8), C(6), C(16) and by W, 
Mo, O(l), 0(2), 0(5), 0(6), C(I), C(11) shows that the O 
atoms bonded to W are in the eclipsed conformation with 
respect to those bonded to Mo; in particular none of the 
metal or oxygen atoms deviate from the respective planes 
by more than 0.02 A. Thus all features of the structure sub­

stantiate the assessment of Mo-W bonding as involving 
seven electrons in the configuration a2ir48l. However, since 
iodine is uniquely bonded to tungsten and the W-O dis­
tances are at least as short as the Mo-O distances the struc­
ture suggests that the Mo-W bonding is polarized such that 
tungsten bears a higher formal charge or the Mo atom en­
joys a greater portion of the bonding electron density. The 
unusually long Mo-N distance is further evidence of the 
latter assessment. Apparently the notable stability of [Mo-
W(02CC(CH3)3)4]I and its CH3CN adduct as compared 
to the dimolybdenum derivative, where only [Mo2(O2CC-
(CH3)3)4]+l3~ has been prepared,2 can be attributed to this 
polar character, which should be expected to stabilize a dis­
crete bond to halogen from the metal of higher formal 
charge. The acetonitrile adduct crystals are paramagnetic 
as expected, and provide a strong, virtually isotropic ESR 
spectrum with (g) = 1.873 (26 G peak to peak). In con­
trast to most strongly metal-metal bonded species the elec­
tronic spectrum in acetonitrile is relatively featureless with 
a strong band at 240 nm (« ~ 15,000) and a pronounced 
shoulder at 850 nm («~ 100). 

Having established that the pure one-electron oxidized 
derivatives could be used as a vehicle to separate the heter-
onuclear species from the dimolybdenum coproducts, it was 
important to ascertain if the pure MoW(O2CR)4 could be 
obtained by reduction of the iodide derivative. The reaction 
was performed by stirring a solution of [MoW(O2CC-
(0^)3)4]I in acetonitrile with zinc powder at 25° for 
12-24 hr. After removing acetonitrile by vacuum distilla­
tion the product mixture was separated by extraction of the 
desired compound into benzene. Pure MoW(O2CC-
(CH3)3)4 was obtained as a yellow sublimate (140°, in 
vacuo) after removal of solvent from the benzene extract. 
Anal. Calcd for MoW(02CC(CH3)3)4: Mo, 14.02; W, 
26.87. Found: Mo, 14.01; W, 26.56. In the mass spectrum a 
set of 15 lines centered at mass number 683 is characteristic 
of the molecular ion; in this spectrum the parent ion set 
arising from Mo2(02CC(CH3)3)4 is barely detectable 
(<1% relative intensity). As expected, the pure compound is 
diamagnetic, and exhibits a 1H NMR spectrum indistin­
guishable from that of Mo2(02CC(CH3)3)4 with a sharp 
singlet at r 8.48 in benzene. A more extensive development 
of the chemistry of MoW(O2CR)4 and derivatives obtained 
from it will be the subject of subsequent publications. 
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Stereochemistry of Ar,Ar-Bis(trimethylsilyl)amino-
and N-ferf-Butyl-./V-{trimethylsilyl)aminobis-
(trifluoromethyl)phosphine 

Sir: 

The structures' and stereochemistry2 of aminophosphines 
have received considerable attention in recent years. Our in­
terest in this area is being extended to include compounds 
containing the silicon-nitrogen-phophorus linkage.3 The 
new silylaminophosphines, (Me3Si)2NP(CF3)2 (1) and 
(Me3Si)(?-Bu)NP(CF3)2 (2), were prepared by the reaction 
of (CF 3 ^PCl with the /V-lithium derivative of the appropri­
ate silylamine.4 

At ambient temperature the 1H N M R spectrum of 1 
consists of a single broad resonance which on cooling broad­
ens further before splitting into two sharp lines and a multi-
plet (Figure la) . By recording the 1H spectra at both 60 
and 100 MHz it was determined that: (i) the 2.8 Hz spac­
ing between the two sharp lines is a coupling constant, as is 
the 0.7 Hz splitting within the multiplet, and (ii) the sepa­
ration (6.3 Hz at 100 MHz, 3.7 Hz at 60 MHz) between 
the doublet and the multiplet results from a chemical shift 
difference. The 19F NMR spectrum of 1 is a doublet (+59.2 
ppm from CFCl3, / P C F = 93.1 Hz) which remains un­
changed down to —130°. 

These observations are consistent with hindered rotation 
about the N - P bond and the characteristic1'2 ground state 
structure, in which the CF3 groups are isochronous and the 
Me3Si groups are anisochronous. The doublet Me3Si reso-

SiMe3(a) 

CF3 

SiMe3(b) 

nance in the 1H NMR spectrum of 1 can be assigned to the 
Me3Si(a) group with JpNSiCH = 2.8 Hz. Such an assign­
ment is based on the observations5'6 that the analogous P-
N-C-H and P - N - 1 3 C coupling constants in dimethylami-
nophosphines are larger when the methyl resides cis to the 
phosphorus lone pair than for the trans conformation. For 
the Me3Si(b) group 7pNSiCH ~ 0 and /FCPNSiCH = 0.7 Hz. 
Possibly the proximity of the Me3Si(b) and CF 3 groups pro­
motes a through space interaction. A similar preferential 
phosphorus coupling has been found to exist in the low tem­
perature 1H NMR spectra of (Me 3 Si^NPCh and a long 

V.C 

Figure 1. NMR spectra of (Me3Si)2NP(CF3)2 (1) and (Me3Si)(Z-
Bu)NP(CFj)2 (2): (a) 60-MHz 1H spectrum of 1 at - 4 0 ° ; (b) 60-
MHz 1H spectrum of the Me3Si group of 2 at ambient temperature; 
(c) 60-MHz 1H spectrum of the r-Bu group of 2 at ambient tempera­
ture; (d) 56.45-MHz 19F spectrum of 2 at ambient temperature. 

range proton-fluorine coupling has been observed in the 
aminoarsine (Me3Si)2NAs(CF3)2.3 

Typically AGNP* values for other acyclic aminophos­
phines fall in the range 7-10 kcal/mol.2 The high AGNP* 
value of 15.3 kcal/mol which is calculated7 for 1 is most 
reasonably attributed to the steric bulk of the Me3Si moi­
ety. 

Compound 2 is apparently unique among aminophos­
phines since both the 1H and 19F N M R spectra (Figure 1) 
indicate the presence of two rotational isomers at ambient 
temperature. The Me3Si region of the 1H spectrum is strik-

SiMe3 t-Bu 

ingly similar to that observed at low temperature for 1 ex­
cept that the doublet:multiplet ratio is ca. 1.3:1 rather than 
1:1. Two tert-butyl resonances, a doublet and a broad sin­
glet, of unequal intensities are also observed. The 19F NMR 
spectrum consists of two doublets (+54.9 ppm, J P C F = 
100.0 Hz, and 55.4 ppm, 7 P C F = 101.0 Hz) in the intensity 
ratio 1.3:1. These results are consistent with the existence of 
two rotamers of slightly different energy which undergo 
slow interconversion on the N M R time scale at ambient 
temperature. 

In view of the earlier discussion of the angular depen­
dence of coupling constants the more intense Me3Si doublet 
(•/pNSiCH = 3.2 Hz) and the ferf-butyl singlet are attrib­
uted to rotamer A in which the Me3Si group is cis to the 
phosphorus lone pair. Similarly the doublet in the rerf-butyl 
region ( /PNCCH = 1.2 Hz) and the Me3Si multiplet 
(^FCPNSiCH = 0.7 Hz) are ascribed to rotamer B. Further­
more, it is noted that the less intense doublet in the 19F 
spectrum (presumably resulting from rotamer B) has the 
larger peak width which correlates with the larger H - F 
coupling observed for the less intense Me3Si resonance in 
the 1H spectrum. 

The high temperature 1H N M R spectrum of 2 revealed a 
coalescence of the tert-butyl signals at +110° from which a 
value of A G N P 1 - 20.8 kcal/mol is calculated.7 This very 
high value of ACNP* is not easily explained. The shorter 
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